visualization.preprocessing
logger_config
logger
preprocessing_visualization
@save_state(model=PreprocessingVisualizationFunctionSchema)
def preprocessing_visualization(config: dict,
save_to_file: bool = False,
show_figure: bool = True) -> None
visualize_preprocessing_scatter
def visualize_preprocessing_scatter(
config: dict,
session_index: int = 0,
frames: list = [],
original_positions_key: str | None = "position",
cleaned_positions_key: str | None = "position_cleaned_lowconf",
aligned_positions_key: str | None = "position_egocentric_aligned",
filtered_positions_key: str | None = "position_processed",
scaled_positions_key: str | None = "position_scaled",
save_to_file: bool = False,
show_figure: bool = True)
Visualize the preprocessing results by plotting the positions of the keypoints in a scatter plot. Each position key parameter can be a string (to include that column) or None (to skip that column).
Parameters
- config (
dict
): Configuration dictionary. - session_index (
int, optional
): Index of the session to visualize. - frames (
list, optional
): List of frames to visualize. - original_positions_key (
str, optional
): Key for the original positions. - cleaned_positions_key (
str, optional
): Key for the low confidence cleaned positions. - aligned_positions_key (
str, optional
): Key for the egocentric aligned positions. - filtered_positions_key (
str, optional
): Key for the filtered positions. - scaled_positions_key (
str, optional
): Key for the scaled positions. - save_to_file (
bool, optional
): Whether to save the figure to a file. - show_figure (
bool, optional
): Whether to show the figure.
Returns
None
visualize_preprocessing_timeseries
def visualize_preprocessing_timeseries(
config: dict,
session_index: int = 0,
n_samples: int = 1000,
sample_offset: int = 0,
original_positions_key: str | None = "position",
aligned_positions_key: str | None = "position_egocentric_aligned",
filtered_positions_key: str | None = "position_processed",
scaled_positions_key: str | None = "position_scaled",
keypoints: list | None = None,
save_to_file: bool = False,
show_figure: bool = True)
Visualize the preprocessing results by plotting position data in a timeseries plot.
Parameters
- config (
dict
): Configuration dictionary. - session_index (
int, optional
): Index of the session to visualize. - n_samples (
int, optional
): Number of samples to plot. - sample_offset (
int, optional
): Starting index for the time series data. Default is 0 (start from beginning). - original_positions_key (
str | None, optional
): Key for the original positions. If None, this position type will be skipped. - aligned_positions_key (
str | None, optional
): Key for the aligned positions. If None, this position type will be skipped. - filtered_positions_key (
str | None, optional
): Key for the filtered positions. If None, this position type will be skipped. - scaled_positions_key (
str | None, optional
): Key for the scaled positions. If None, this position type will be skipped. - keypoints (
list | None, optional
): List of keypoint names to include in the visualization. If None or empty list, all keypoints will be included. - save_to_file (
bool, optional
): Whether to save the figure to a file. - show_figure (
bool, optional
): Whether to show the figure.
Returns
None
visualize_preprocessing_cloud
def visualize_preprocessing_cloud(
config: dict,
session_index: int = 0,
n_samples: int = 1000,
aligned_positions_key: str | None = "position_egocentric_aligned",
filtered_positions_key: str | None = "position_processed",
scaled_positions_key: str | None = "position_scaled",
keypoints: list | None = None,
alpha: float = 0.3,
save_to_file: bool = False,
show_figure: bool = True)
Visualize the preprocessing results by plotting a cloud of keypoint positions across multiple frames. Only includes aligned, filtered, and scaled positions as these are in comparable coordinate systems.
Parameters
- config (
dict
): Configuration dictionary. - session_index (
int, optional
): Index of the session to visualize. - n_samples (
int, optional
): Number of frames to include in the visualization. Frames are randomly sampled. - aligned_positions_key (
str | None, optional
): Key for the egocentric aligned positions. If None, this position type will be skipped. - filtered_positions_key (
str | None, optional
): Key for the filtered positions. If None, this position type will be skipped. - scaled_positions_key (
str | None, optional
): Key for the scaled positions. If None, this position type will be skipped. - keypoints (
list | None, optional
): List of keypoint names to include. If None, all keypoints will be included. - alpha (
float, optional
): Transparency level for the dots (0.0 to 1.0). - save_to_file (
bool, optional
): Whether to save the figure to a file. - show_figure (
bool, optional
): Whether to show the figure.
Returns
None