model.create_training
logger_config
logger
traindata_aligned
def traindata_aligned(config: dict,
sessions: List[str] | None = None,
test_fraction: float | None = None,
read_from_variable: str = "position_processed") -> None
Create training dataset for aligned data. Save numpy arrays with the test/train info to the project folder.
Parameters
- config (
dict
): Configuration parameters dictionary. - sessions (
List[str], optional
): List of session names. If None, all sessions will be used. Defaults to None. - test_fraction (
float, optional
): Fraction of data to use as test data. Defaults to 0.1.
Returns
None
create_trainset
@save_state(model=CreateTrainsetFunctionSchema)
def create_trainset(config: dict, save_logs: bool = False) -> None
Creates a training and test datasets for the VAME model. Fills in the values in the "create_trainset" key of the states.json file. Creates the training dataset for VAME at:
- project_name/
- data/
- session00/
- session00-PE-seq-clean.npy
- session01/
- session01-PE-seq-clean.npy
- train/
- test_seq.npy
- train_seq.npy
- session00/
- data/
The produced -clean.npy files contain the aligned time series data in the shape of (num_dlc_features - 2, num_video_frames).
The produced test_seq.npy contains the combined data in the shape of (num_dlc_features - 2, num_video_frames * test_fraction).
The produced train_seq.npy contains the combined data in the shape of (num_dlc_features - 2, num_video_frames * (1 - test_fraction)).
Parameters
- config (
dict
): Configuration parameters dictionary. - save_logs (
bool, optional
): If True, the function will save logs to the project folder. Defaults to False.
Returns
None