Skip to main content

model.create_training

logger_config

logger

traindata_aligned

def traindata_aligned(
config: dict,
sessions: List[str] | None = None,
test_fraction: float = 0.1,
read_from_variable: str = "position_processed",
split_mode: Literal["mode_1", "mode_2"] = "mode_1") -> None

Create training dataset for aligned data. Save numpy arrays with the test/train info to the project folder.

Parameters

  • config (dict): Configuration parameters dictionary.
  • sessions (List[str], optional): List of session names. If None, all sessions will be used. Defaults to None.
  • test_fraction (float, optional): Fraction of data to use as test data. Defaults to 0.1.
  • read_from_variable (str, optional): Variable name to read from the processed data. Defaults to "position_processed".
  • split_mode (Literal["mode_1", "mode_2"], optional): Mode for splitting data into train/test sets:
  • mode_1: Original mode that takes the initial test_fraction portion of the combined data for testing and the rest for training.
  • mode_2: Takes random continuous chunks from each session proportional to test_fraction for testing and uses the remaining parts for training. Defaults to "mode_1".

Returns

  • None

create_trainset

@save_state(model=CreateTrainsetFunctionSchema)
def create_trainset(config: dict,
test_fraction: float = 0.1,
read_from_variable: str = "position_processed",
split_mode: Literal["mode_1", "mode_2"] = "mode_1",
save_logs: bool = False) -> None

Creates training and test datasets for the VAME model. Fills in the values in the "create_trainset" key of the states.json file. Creates the training dataset for VAME at:

  • project_name/
    • data/
      • session00/
        • session00-PE-seq-clean.npy
      • session01/
        • session01-PE-seq-clean.npy
      • train/
        • test_seq.npy
        • train_seq.npy

The produced -clean.npy files contain the aligned time series data in the shape of (num_dlc_features - 2, num_video_frames).

The produced test_seq.npy contains the combined data in the shape of (num_dlc_features - 2, num_video_frames * test_fraction).

The produced train_seq.npy contains the combined data in the shape of (num_dlc_features - 2, num_video_frames * (1 - test_fraction)).

Parameters

  • config (dict): Configuration parameters dictionary.
  • save_logs (bool, optional): If True, the function will save logs to the project folder. Defaults to False.
  • test_fraction (float, optional): Fraction of data to use as test data. Defaults to 0.1.
  • read_from_variable (str, optional): Variable name to read from the processed data. Defaults to "position_processed".
  • split_mode (Literal["mode_1", "mode_2"], optional): Mode for splitting data into train/test sets:
  • mode_1: Original mode that takes the initial test_fraction portion of the combined data for testing and the rest for training.
  • mode_2: Takes random continuous chunks from each session proportional to test_fraction for testing and uses the remaining parts for training. Defaults to "mode_1".

Returns

  • None