model.evaluate
logger_config
logger
use_gpu
eval_temporal
def eval_temporal(cfg: dict,
use_gpu: bool,
model_name: str,
fixed: bool,
snapshot: Optional[str] = None,
suffix: Optional[str] = None) -> None
Evaluate the temporal aspects of the trained model.
Parameters
- cfg (
dict
): Configuration dictionary. - use_gpu (
bool
): Flag indicating whether to use GPU for evaluation. - model_name (
str
): Name of the model. - fixed (
bool
): Flag indicating whether the data is fixed or not. - snapshot (
str, optional
): Path to the model snapshot. Defaults to None. - suffix (
str, optional
): Suffix for the saved plot filename. Defaults to None.
Returns
None
evaluate_model
@save_state(model=EvaluateModelFunctionSchema)
def evaluate_model(config: dict,
use_snapshots: bool = False,
save_logs: bool = False) -> None
Evaluate the trained model. Fills in the values in the "evaluate_model" key of the states.json file. Saves the evaluation results to:
- project_name/
- model/
- evaluate/
- model/
Parameters
- config (
dict
): Configuration dictionary. - use_snapshots (
bool, optional
): Whether to plot for all snapshots or only the best model. Defaults to False. - save_logs (
bool, optional
): Flag indicating whether to save logs. Defaults to False.
Returns
None