Skip to main content

visualization.community

hierarchy_pos

def hierarchy_pos(G: nx.Graph,
root: str | None = None,
width: float = 0.5,
vert_gap: float = 0.2,
vert_loc: float = 0,
xcenter: float = 0.5) -> Dict[str, Tuple[float, float]]

Positions nodes in a tree-like layout. Ref: From Joel's answer at https://stackoverflow.com/a/29597209/2966723.

Parameters

  • G (nx.Graph): The input graph. Must be a tree.
  • root (str, optional): The root node of the tree. If None, the function selects a root node based on graph type. Defaults to None.
  • width (float, optional): The horizontal space assigned to each level. Defaults to 0.5.
  • vert_gap (float, optional): The vertical gap between levels. Defaults to 0.2.
  • vert_loc (float, optional): The vertical location of the root node. Defaults to 0.
  • xcenter (float, optional): The horizontal location of the root node. Defaults to 0.5.

Returns

  • Dict[str, Tuple[float, float]]: A dictionary mapping node names to their positions (x, y).

draw_tree

def draw_tree(T: nx.Graph,
fig_width: float = 20.0,
usage_dict: Dict[str, float] = dict(),
save_to_file: bool = True,
show_figure: bool = False,
results_dir: str | None = None) -> None

Draw a tree.

Parameters

  • T (nx.Graph): The tree to be drawn.
  • fig_width (int, optional): The width of the figure. Defaults to 20.
  • usage_dict (Dict[str, float], optional): Dictionary mapping node names to their usage values. Defaults to empty dictionary.
  • save_to_file (bool, optional): Flag indicating whether to save the plot. Defaults to True.
  • show_figure (bool, optional): Flag indicating whether to show the plot. Defaults to False.
  • results_dir (str, optional): The directory to save the plot. Defaults to None.

Returns

  • None

visualize_hierarchical_tree

def visualize_hierarchical_tree(
config: dict, segmentation_algorithm: Literal["hmm",
"kmeans"]) -> None

Visualizes the hierarchical tree.

Parameters

  • config (dict): Configuration dictionary.
  • segmentation_algorithm (Literal["hmm", "kmeans"]): Segmentation algorithm.

Returns

  • None