io.load_poses
load_pose_estimation
def load_pose_estimation(
pose_estimation_file: Path | str, video_file: Path | str, fps: int,
source_software: Literal["DeepLabCut", "SLEAP", "LightningPose"]
) -> xr.Dataset
Load pose estimation data.
Parameters
- pose_estimation_file (
Path or str
): Path to the pose estimation file. - video_file (
Path or str
): Path to the video file. - fps (
int
): Sampling rate of the video. - source_software (
Literal["DeepLabCut", "SLEAP", "LightningPose"]
): Source software used for pose estimation.
Returns
- ds (
xarray.Dataset
): Pose estimation dataset.
load_vame_dataset
def load_vame_dataset(ds_path: Path | str) -> xr.Dataset
Load VAME dataset.
Parameters
- ds_path (
Path or str
): Path to the netCDF dataset.
Returns
xr.Dataset
: VAME dataset
nc_to_dataframe
def nc_to_dataframe(nc_data)
read_pose_estimation_file
def read_pose_estimation_file(
file_path: str,
file_type: Optional[PoseEstimationFiletype] = None,
path_to_pose_nwb_series_data: Optional[str] = None
) -> Tuple[pd.DataFrame, np.ndarray, xr.Dataset]
Read pose estimation file.
Parameters
- file_path (
str
): Path to the pose estimation file. - file_type (
PoseEstimationFiletype
): Type of the pose estimation file. Supported types are 'csv' and 'nwb'. - path_to_pose_nwb_series_data (
str, optional
): Path to the pose data inside the nwb file, by default None
Returns
Tuple[pd.DataFrame, np.ndarray]
: Tuple containing the pose estimation data as a pandas DataFrame and a numpy array.