visualization.model
use_gpu
plot_reconstruction
def plot_reconstruction(filepath: str,
test_loader: Data.DataLoader,
seq_len_half: int,
model: RNN_VAE,
model_name: str,
FUTURE_DECODER: bool,
FUTURE_STEPS: int,
suffix: Optional[str] = None,
show_figure: bool = False) -> None
Plot the reconstruction and future prediction of the input sequence. Saves the plot to:
- project_name/
- model/
- evaluate/
- Reconstruction_model_name.png
- evaluate/
- model/
Parameters
- filepath (
str
): Path to save the plot. - test_loader (
Data.DataLoader
): DataLoader for the test dataset. - seq_len_half (
int
): Half of the temporal window size. - model (
RNN_VAE
): Trained VAE model. - model_name (
str
): Name of the model. - FUTURE_DECODER (
bool
): Flag indicating whether the model has a future prediction decoder. - FUTURE_STEPS (
int
): Number of future steps to predict. - suffix (
str, optional
): Suffix for the saved plot filename. Defaults to None. - show_figure (
bool, optional
): Flag indicating whether to show the plot. Defaults to False.
Returns
None
plot_loss
def plot_loss(config: dict,
model_name: str,
save_to_file: bool = False,
show_figure: bool = True) -> None
Plot the losses of the trained model. Saves the plot to:
- project_name/
- model/
- evaluate/
- mse_and_kl_loss_model_name.png
- evaluate/
- model/
Parameters
- config (
dict
): Configuration dictionary. - model_name (
str
): Name of the model. - save_to_file (
bool, optional
): Flag indicating whether to save the plot. Defaults to False. - show_figure (
bool, optional
): Flag indicating whether to show the plot. Defaults to True.
Returns
None