util.data_manipulation
logger_config
logger
consecutive
def consecutive(data: np.ndarray, stepsize: int = 1) -> List[np.ndarray]
Find consecutive sequences in the data array.
Parameters
- data (
np.ndarray
): Input array. - stepsize (
int, optional
): Step size. Defaults to 1.
Returns
List[np.ndarray]
: List of consecutive sequences.
nan_helper
def nan_helper(y: np.ndarray) -> Tuple
Identifies indices of NaN values in an array and provides a function to convert them to non-NaN indices.
Parameters
- y (
np.ndarray
): Input array containing NaN values.
Returns
Tuple[np.ndarray, Union[np.ndarray, None]]
: A tuple containing two elements:
- An array of boolean values indicating the positions of NaN values.
- A lambda function to convert NaN indices to non-NaN indices.
interpol_first_rows_nans
def interpol_first_rows_nans(arr: np.ndarray) -> np.ndarray
Interpolates NaN values in the given array.
Parameters
- arr (
np.ndarray
): Input array with NaN values.
Returns
np.ndarray
: Array with interpolated NaN values.
interpolate_nans_with_pandas
def interpolate_nans_with_pandas(data: np.ndarray) -> np.ndarray
Interpolate NaN values along the time axis of a 3D NumPy array using Pandas.
Parameters
- data (
numpy.ndarray
): Input 3D array of shape (time, keypoints, space).
Returns
numpy.ndarray:
: Array with NaN values interpolated.
crop_and_flip_legacy
def crop_and_flip_legacy(
rect: Tuple, src: np.ndarray, points: List[np.ndarray],
ref_index: Tuple[int, int]) -> Tuple[np.ndarray, List[np.ndarray]]
Crop and flip the image based on the given rectangle and points.
Parameters
- rect (
Tuple
): Rectangle coordinates (center, size, theta). - src: np.ndarray: Source image.
- points (
List[np.ndarray]
): List of points. - ref_index (
Tuple[int, int]
): Reference indices for alignment.
Returns
Tuple[np.ndarray, List[np.ndarray]]
: Cropped and flipped image, and shifted points.
background
def background(project_path: str,
session: str,
video_path: str,
num_frames: int = 1000,
save_background: bool = True) -> np.ndarray
Compute background image from fixed camera.
Parameters
- project_path (
str
): Path to the project directory. - session (
str
): Name of the session. - video_path (
str
): Path to the video file. - num_frames (
int, optional
): Number of frames to use for background computation. Defaults to 1000.
Returns
np.ndarray
: Background image.