analysis.generative_functions
logger_config
logger
random_generative_samples_motif
def random_generative_samples_motif(config: dict, model: torch.nn.Module,
                                    latent_vector: np.ndarray,
                                    labels: np.ndarray,
                                    n_clusters: int) -> plt.Figure
Generate random samples for motifs.
Parameters
- config (dict): Configuration dictionary.
- model (torch.nn.Module): PyTorch model.
- latent_vector (np.ndarray): Latent vectors.
- labels (np.ndarray): Labels.
- n_clusters (int): Number of clusters.
Returns
- plt.Figure: Figure of generated samples.
random_generative_samples
def random_generative_samples(config: dict, model: torch.nn.Module,
                              latent_vector: np.ndarray) -> plt.Figure
Generate random generative samples.
Parameters
- config (dict): Configuration dictionary.
- model (torch.nn.Module): PyTorch model.
- latent_vector (np.ndarray): Latent vectors.
Returns
- plt.Figure: Figure of generated samples.
random_reconstruction_samples
def random_reconstruction_samples(config: dict, model: torch.nn.Module,
                                  latent_vector: np.ndarray) -> plt.Figure
Generate random reconstruction samples.
Parameters
- config (dict): Configuration dictionary.
- model (torch.nn.Module): PyTorch model to use.
- latent_vector (np.ndarray): Latent vectors.
Returns
- plt.Figure: Figure of reconstructed samples.
visualize_cluster_center
def visualize_cluster_center(config: dict, model: torch.nn.Module,
                             cluster_center: np.ndarray) -> plt.Figure
Visualize cluster centers.
Parameters
- config (dict): Configuration dictionary.
- model (torch.nn.Module): PyTorch model.
- cluster_center (np.ndarray): Cluster centers.
Returns
- plt.Figure: Figure of cluster centers.
generative_model
@save_state(model=GenerativeModelFunctionSchema)
def generative_model(config: dict,
                     segmentation_algorithm: SegmentationAlgorithms,
                     mode: str = "sampling",
                     save_logs: bool = False) -> plt.Figure
Generative model.
Parameters
- config (dict): Configuration dictionary.
- mode (str, optional): Mode for generating samples. Defaults to "sampling".
Returns
- plt.Figure: Plots of generated samples for each segmentation algorithm.