vame.analysis.pose_segmentation
Variational Animal Motion Embedding 1.0-alpha Toolbox © K. Luxem & P. Bauer, Department of Cellular Neuroscience Leibniz Institute for Neurobiology, Magdeburg, Germany
https://github.com/LINCellularNeuroscience/VAME Licensed under GNU General Public License v3.0
embedd_latent_vectors
def embedd_latent_vectors(
cfg: dict, files: List[str], model: RNN_VAE, fixed: bool,
tqdm_stream: TqdmToLogger | None) -> List[np.ndarray]
Embed latent vectors for the given files using the VAME model.
Arguments:
cfg
dict - Configuration dictionary.files
List[str] - List of files names.model
RNN_VAE - VAME model.fixed
bool - Whether the model is fixed.tqdm_stream
TqdmToLogger - TQDM Stream to redirect the tqdm output to logger.
Returns:
List[np.ndarray]
- List of latent vectors for each file.
get_motif_usage
def get_motif_usage(label: np.ndarray) -> np.ndarray
Compute motif usage from the label array.
Arguments:
label
np.ndarray - Label array.
Returns:
np.ndarray
- Array of motif usage counts.
same_parametrization
def same_parametrization(
cfg: dict, files: List[str], latent_vector_files: List[np.ndarray],
states: int, parametrization: str
) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]
Apply the same parametrization to all animals.
Arguments:
cfg
dict - Configuration dictionary.files
List[str] - List of file names.latent_vector_files
List[np.ndarray] - List of latent vector arrays.states
int - Number of states.parametrization
str - parametrization method.
Returns:
Tuple
- Tuple of labels, cluster centers, and motif usages.
individual_parametrization
def individual_parametrization(cfg: dict, files: List[str],
latent_vector_files: List[np.ndarray],
cluster: int) -> Tuple
Apply individual parametrization to each animal.
Arguments:
cfg
dict - Configuration dictionary.files
List[str] - List of file names.latent_vector_files
List[np.ndarray] - List of latent vector arrays.cluster
int - Number of clusters.
Returns:
Tuple
- Tuple of labels, cluster centers, and motif usages.
pose_segmentation
@save_state(model=PoseSegmentationFunctionSchema)
def pose_segmentation(config: str, save_logs: bool = False) -> None
Perform pose segmentation using the VAME model.
Arguments:
config
str - Path to the configuration file.
Returns:
None