vame.analysis.generative_functions
Variational Animal Motion Embedding 1.0-alpha Toolbox © K. Luxem & P. Bauer, Department of Cellular Neuroscience Leibniz Institute for Neurobiology, Magdeburg, Germany
https://github.com/LINCellularNeuroscience/VAME Licensed under GNU General Public License v3.0
random_generative_samples_motif
def random_generative_samples_motif(cfg: dict, model: torch.nn.Module,
latent_vector: np.ndarray,
labels: np.ndarray,
n_cluster: int) -> None
Generate random samples for motifs.
Arguments:
cfg
dict - Configuration dictionary.model
torch.nn.Module - PyTorch model.latent_vector
np.ndarray - Latent vectors.labels
np.ndarray - Labels.n_cluster
int - Number of clusters.
Returns:
None
- Plot of generated samples.
random_generative_samples
def random_generative_samples(cfg: dict, model: torch.nn.Module,
latent_vector: np.ndarray) -> None
Generate random generative samples.
Arguments:
cfg
dict - Configuration dictionary.model
torch.nn.Module - PyTorch model.latent_vector
np.ndarray - Latent vectors.
Returns:
None
random_reconstruction_samples
def random_reconstruction_samples(cfg: dict, model: torch.nn.Module,
latent_vector: np.ndarray) -> None
Generate random reconstruction samples.
Arguments:
cfg
dict - Configuration dictionary.model
torch.nn.Module - PyTorch model to use.latent_vector
np.ndarray - Latent vectors.
Returns:
None
visualize_cluster_center
def visualize_cluster_center(cfg: dict, model: torch.nn.Module,
cluster_center: np.ndarray) -> None
Visualize cluster centers.
Arguments:
cfg
dict - Configuration dictionary.model
torch.nn.Module - PyTorch model.cluster_center
np.ndarray - Cluster centers.
Returns:
None
generative_model
@save_state(model=GenerativeModelFunctionSchema)
def generative_model(config: str,
parametrization: Parametrizations,
mode: str = "sampling",
save_logs: bool = False) -> Dict[str, plt.Figure]
Generative model.
Arguments:
config
str - Path to the configuration file.mode
str, optional - Mode for generating samples. Defaults to "sampling".
Returns:
Dict[str, plt.Figure]: Plots of generated samples for each parametrization.