vame.model.create_training
Variational Animal Motion Embedding 1.0-alpha Toolbox © K. Luxem & P. Bauer, Department of Cellular Neuroscience Leibniz Institute for Neurobiology, Magdeburg, Germany
https://github.com/LINCellularNeuroscience/VAME Licensed under GNU General Public License v3.0
plot_check_parameter
def plot_check_parameter(cfg: dict, iqr_val: float, num_frames: int,
X_true: List[np.ndarray], X_med: np.ndarray) -> None
Plot the check parameter - z-scored data and the filtered data.
Arguments:
cfg
dict - Configuration parameters.iqr_val
float - IQR value.num_frames
int - Number of frames.X_true
List[np.ndarray] - List of true data.X_med
np.ndarray - Filtered data.anchor_1
int - Index of the first anchor point (deprecated).anchor_2
int - Index of the second anchor point (deprecated).
Returns:
None - Plot the z-scored data and the filtered data.
traindata_aligned
def traindata_aligned(cfg: dict, files: List[str], testfraction: float,
savgol_filter: bool, check_parameter: bool) -> None
Create training dataset for aligned data.
Arguments:
cfg
dict - Configuration parameters.files
List[str] - List of files.testfraction
float - Fraction of data to use as test data.num_features
int - Number of features (deprecated).savgol_filter
bool - Flag indicating whether to apply Savitzky-Golay filter.check_parameter
bool - If True, the function will plot the z-scored data and the filtered data.
Returns:
None - Save numpy arrays with the test/train info to the project folder.
traindata_fixed
def traindata_fixed(cfg: dict, files: List[str], testfraction: float,
num_features: int, savgol_filter: bool,
check_parameter: bool,
pose_ref_index: Optional[List[int]]) -> None
Create training dataset for fixed data.
Arguments:
cfg
dict - Configuration parameters.files
List[str] - List of files.testfraction
float - Fraction of data to use as test data.num_features
int - Number of features.savgol_filter
bool - Flag indicating whether to apply Savitzky-Golay filter.check_parameter
bool - If True, the function will plot the z-scored data and the filtered data.pose_ref_index
Optional[List[int]] - List of reference coordinate indices for alignment.
Returns:
None - Save numpy arrays with the test/train info to the project folder.
create_trainset
@save_state(model=CreateTrainsetFunctionSchema)
def create_trainset(config: str,
pose_ref_index: Optional[List] = None,
check_parameter: bool = False,
save_logs: bool = False) -> None
Creates a training dataset for the VAME model.
Arguments:
config
str - Path to the config file.pose_ref_index
Optional[List], optional - List of reference coordinate indices for alignment. Defaults to None.check_parameter
bool, optional - If True, the function will plot the z-scored data and the filtered data. Defaults to False.