vame.util.data_manipulation
get_pose_data_from_nwb_file
def get_pose_data_from_nwb_file(
nwbfile: NWBFile, path_to_pose_nwb_series_data: str) -> LabelledDict
Get pose data from nwb file using a inside path to the nwb data.
Arguments:
nwbfile
NWBFile - NWB file object.path_to_pose_nwb_series_data
str - Path to the pose data inside the nwb file.
Returns:
LabelledDict
- Pose data.
consecutive
def consecutive(data: np.ndarray, stepsize: int = 1) -> List[np.ndarray]
Find consecutive sequences in the data array.
Arguments:
data
np.ndarray - Input array.stepsize
int, optional - Step size. Defaults to 1.
Returns:
List[np.ndarray]
- List of consecutive sequences.
nan_helper
def nan_helper(y: np.ndarray) -> Tuple
Identifies indices of NaN values in an array and provides a function to convert them to non-NaN indices.
Arguments:
y
np.ndarray - Input array containing NaN values.
Returns:
Tuple[np.ndarray, Union[np.ndarray, None]]: A tuple containing two elements:
- An array of boolean values indicating the positions of NaN values.
- A lambda function to convert NaN indices to non-NaN indices.
interpol_all_nans
def interpol_all_nans(arr: np.ndarray) -> np.ndarray
Interpolates all NaN values in the given array.
Arguments:
arr
np.ndarray - Input array containing NaN values.
Returns:
np.ndarray
- Array with NaN values replaced by interpolated values.
interpol_first_rows_nans
def interpol_first_rows_nans(arr: np.ndarray) -> np.ndarray
Interpolates NaN values in the given array.
Arguments:
arr
np.ndarray - Input array with NaN values.
Returns:
np.ndarray
- Array with interpolated NaN values.
crop_and_flip
def crop_and_flip(
rect: Tuple, src: np.ndarray, points: List[np.ndarray],
ref_index: Tuple[int, int]) -> Tuple[np.ndarray, List[np.ndarray]]
Crop and flip the image based on the given rectangle and points.
Arguments:
rect
Tuple - Rectangle coordinates (center, size, theta).src
np.ndarray - Source image.points
List[np.ndarray] - List of points.ref_index
Tuple[int, int] - Reference indices for alignment.
Returns:
Tuple[np.ndarray, List[np.ndarray]]: Cropped and flipped image, and shifted points.
background
def background(path_to_file: str,
filename: str,
file_format: str = '.mp4',
num_frames: int = 1000,
save_background: bool = True) -> np.ndarray
Compute background image from fixed camera.
Arguments:
path_to_file
str - Path to the directory containing the video files.filename
str - Name of the video file.file_format
str, optional - Format of the video file. Defaults to '.mp4'.num_frames
int, optional - Number of frames to use for background computation. Defaults to 1000.
Returns:
np.ndarray
- Background image.